15
Secara umum penguat (amplifier) dapat dikelompokkan menjadi 3 (tiga), yaitu penguat
tegangan, penguat arus dan penguat transresistansi. Pada dasarnya kerja sebuah penguat
adalah mengambil masukan (input), mengolahnya dan menghasilkan keluaran (output)
yang besarnya sebanding dengan masukan. Besarnya tegangan keluaran (vo)
dibandingkan dengan tegangan masukan (vi) dinyatakan sebagai
o V i v = A v (13.1)
dimana AV adalah penguatan tegangan (voltage gain). Hal yang sama untuk penguat
arus berlaku
o I i i = A i (13.2)
dimana io adalah arus keluaran, ii adalah arus masukan dan AI adalah penguatan arus
(current gain). Sementara ini pembahasan hanya dibatasi pada penguatan tegangan.
Gambar 13.1 menunjukkan rangkaian setara Thevenin dari jaringan bergerbang
dua dari suatu penguat. Secara ideal, penguat tidak mengambil arus dari masukan vi dan
tegangan keluaran tidak mengalami perubahan jika arus diambil dari ujung keluaran
(lihat gambar 13.1-a). Pada kenyataannya rangkaian yang ideal ini tidak bisa dibuat.
Rangkaian seperti terlihat pada gambar 13.1-b adalah lebih realistik dimana kita
menambah hambatan masukan Ri dan hambatan keluaran Ro.
13 PENGUAT TRANSISTOR
Penguat Transistor 155
Gambar 13.1 Rangkaian setara Thevenin jaringan bergerbang dua
Pada gambar 13.1-b terlihat bahwa pada bagian masukan mengalir arus masukan
sebesar
i
i
i R
v
i = (13.3)
Semakin besar harga Ri penguat tersebut semakin mendekati kondisi ideal. Hambatan
sumber Rs dan hambatan masukan Ri membentuk pembagi tegangan sehingga
s
i s
i
i v
R R
R
v
+
= (13.4)
Pada bagian keluaran, dengan adanya Ro, tegangan keluaran '
o v menjadi
o o o o v' = v - i R
atau
o
o L
L
o v
R R
R
v
+
' = (13.5)
~
Rs io
Sumber Penguat Beban
(b) vi' ~
i
vi
R
vi ~
(a)
Rs
ii
vi
~
o=Avi
v
vo'
RL
Ro io
vo=Avi
vo RL
156 ELEKTRONIKA DASAR
Persamaan 13.5 jelas memperlihatkan bahwa semakin kecil harga Ro suatu penguat akan
medekati kondisi ideal.
13.2 Penguat Tegangan
Pada bagian sebelumnya telah dipelajari bagaimana transistor diberi tegangan panjar
(bias) agar transistor tersebut dapat bekerja sebagai penguat. Pada gambar 13.2
diperlihatkan penguat BJT emitor-ditanahkan dengan tegangan panjar dari VCC dan VBE.
Gambar 13.2 pemasangan tegangan panjar pada penguat emitor ditanahkan
Antara parameter masukan dan keluaran terdapat hubungan dalam bentuk
eksponensial sebagai berikut
÷÷
ø
ö
ç çè
æ
»
þ
ý ü
î
í ì
- ÷÷
ø
ö
ç çè
æ
- =
T
BE
o
T
BE
E o
V
v
I
V
v
i I
exp
exp 1
(13.6)
Arus kolektor (iC) besarnya hampir mendekati arus emitor (iE), dengan demikian kita
dapat menuliskan
÷÷
ø
ö
ç çè
æ
»
T
BE
C o V
v
i I exp (13.7)
+
v
BE _
v i ~
RL
CC _
V
+
Penguat Transistor 157
(a)
(b)
(c)
Gambar 13.3 Bentuk isyarat keluaran suatu penguat untuk isyarat masukan (a) 1 dan
1,8 mV, (b) 4 dan 8 mV dan (c) 15 dan 20 mV
158 ELEKTRONIKA DASAR
dan tegangan kolektor diberikan oleh
÷÷
ø
ö
ç çè
æ
= -
= -
T
BE
C CC o L
C CC C L
V
v
v V I R
v V i R
exp
(13.8)
Persamaan 13.8 menunjukkan hubungan antara tegangan input vBE dan tegangan output
vC dimana keduanya terdapat komponen DC (untuk panjar) dan komponen AC (isyarat).
Sayangnya keluaran dan masukan merupakan hubungan yang tidak selalu linier.
Dengan kata lain tidak selalu keluaran merupakan copy dari masukan sehingga terjadi
keluaran yang terdestori (cacat). Ini terjadi akibat isyarat masukan yang terlalu besar.
Pada gambar 13.3-a isyarat keluaran dari suatu input 1 dan 1.8 mV memperlihatkan
bentuk sinusoida yang sempurna (tidak terjadi distorsi). Namun jika isyarat masukan
diperbesar menjadi 4 dan 8 mV (gambar 13.3-b) nampak bahwa untuk garis referensi di
7V, isyarat keluaran tidak simetri lagi (bagian bawah lebih tajam). Pada isyarat
masukan sebesar 15 mV (gambar 13.3-c), isyarat keluaran mengalami distorsi yang
sangat nyata. Saat masukan diperbesar ke harga 20 mV, masukan kolektor menyamai
tegangan emiter, akibatnya transistor berada pada daerah jenuh sehingga isyarat
keluaran terpotong kurang lebih 2V.
Dengan demikian kita hanya dapat menentukan besarnya tegangan keluaran
karena adanya perubahan yang sangat kecil pada masukan, yang lebih dikenal sebagai
penguatan isyarat kecil (small-signal gain). Kita memiliki
÷÷
ø
ö
ç çè
æ
= -
T
BE
C CC o L V
v
v V I R exp
dan besarnya penguatan diberikan oleh
þ
ý ü
î
í ì
÷ ÷ø
ö
ç çè
æ
÷ ÷ø
ö
ç çè
æ
= -
T
BE
o
T
L
BE
C
V
v
I
V
R
dv
dv
exp atau
T
C L
BE
C
V
i R
dv
dv
= - (13.9)
Penguat Transistor 159
Pada persamaan 13.9 terlihat bahwa penguatan berharga negatif, artinya jika vBE naik
maka iC juga naik, tetapi sebaliknya vC akan menurun.
Untuk pengoperasian pada isyarat kecil, iC tetap mendekati harga panjar DC
yaitu IC, sehingga penguatan isyarat kecil diberikan oleh
T
C L
V V
I R
A = - (13.10)
Penguatan ini bernilai cukup besar, misalnya untuk C L I R = 5 V diperoleh penguatan
sebesar » -200.
13.3 Hambatan Masukan
Pada rangkaian emitor-ditanahkan (common emitor) harga hambatan masukan dapat
diperoleh juga dari hubungan eksponensial
÷÷
ø
ö
ç çè
æ
- =
T
BE
E o V
v
i I exp
atau
( 1)
exp
+
÷÷
ø
ö
ç çè
æ
=
b
T
BE
o
B
V
v
I
i
Sekali lagi untuk isyarat masukan yang sangat kecil diperoleh
( 1)
exp
+
÷÷
ø
ö
ç çè
æ
÷ ÷ø
ö
ç çè
æ
=
b
T
BE
T
o
BE
B V
v
V
I
dv
di
sehingga
( )
E
T
T
BE
o
T
E
BB
I
V
V
v
I
V
di
dv
b
b
=
÷÷
ø
ö
ç çè
æ
+
=
exp
1
(13.11)
160 ELEKTRONIKA DASAR
Ruas kiri tidak lain adalah hambatan masukan untuk rangkaian emitor ditanahkan atau
biasa disimbolkan dengan rp . Untuk isyarat kecil, arus emitor mendekati hara DC (IE)
sehingga
E
T
I
V
r
b
p = (13.12)
Gambar 13.4 Pengambilan harga rp dari karakteristik input transistor
Perlu dicatat bahwa rp bukanlah berasal dari resistor yang nyata; namum berasal
dari kemiringan (slope) kurva karakteristik masukan (lihat gambar 13.4) pada titik
panjar DC.
Dengan cara yang sama untuk rangkaian penguat basis-ditanahkan, dengan arus
masukan E B - i = (b + 1) i , hambatan masukan (re) adalah
E
T
e I
V
r = (13.13)
Persamaan 13.13 diturunkan langsung dari exp( / ) E o EB T - I » I -v V . Dengan demikian
hubungan rp dan re dapat dituliskan sebagai
BE
BE
V
IB
B
i
Slope
v
=1/rp
Penguat Transistor 161
p p r = b r (13.14)
Sedangkan besarnya penguatan tegangan dimungkinkan untuk dituliskan sebagai
e
L
V r
R
A = - (13.15)
Dari keadaan di atas nampak bahwa besarnya penguatan tegangan adalah sama untuk
setiap transistor, yaitu hanya tergantung pada IC dan bukan pada b.
13.4 Hambatan Keluaran
Trasistor mengalirkan arus lewat hambatan beban sebesar
C B i = b i (13.16)
dimana harganya hampir tidak tergantung pada besarnya RL karena iC hampir tidak
tergantung pada besarnya vCE. Besarnya hambatan keluaran walaupun keluaran
terbebani akan berharga sekitar RL.
13.5 Model-model Isyarat Kecil (Small-Signal Models)
Untuk menentukan sifat-sifat sebuah penguat transistor, dapat dilakukan pendekatan
yaitu mengganti transistor tersebut dengan rangkaian setara model isyarat kecil. Model
ini tersusun dari rangkaian yang lebih sederhana sehingga memudahkan perhitungan.
Gambar 13.5 Model isyarat kecil untuk penguat emitor ditanahkan
C
E
rp
B
ib
bib
i c
162 ELEKTRONIKA DASAR
Gambar 13.5 menunjukkan sebuah model isyarat kecil untuk penguat emitor
ditanahkan. Pada bagian masukan (basis) mengalir arus AC (yaitu iB) lewat hambatan
r b re p = dimana e T E r =V / I . Pada bagian keluaran (kolektor), transistor mempunyai
arus AC kolektor (iC) yang (hampir) konstan sebesar C b i = b i .
Gambar 13.6 Model isyarat kecil untuk penguat basis ditanahkan
Gambar 13.6-a menunjukkan sebuah model isyarat kecil untuk penguat basisditanahkan.
Dengan membuat modifikasi model seperti terlihat pada gambar 13.6-b,
kadang-kadang dapat memberi kemudahan dan lebih berguna. Pada bagian masukan
terdapat hambatan masukan re. Jika pada masukan diberi tegangan masukan sebesar vb
maka arus masukan adalah ib , sedangkan arus sebesar ( ) b b + 1 i mengalir lewat re
sehingga
( ) B b e v = b + 1 i r (13.17)
( )
p
b
r
r
i
v
e
b
b
»
= + 1
(13.18)
yang merupakan hambatan masukan seperti yang diharapkan.
C
bi
B
(a)
re
i
E
e
aie
E
(b)
re
B
ib b
C
Penguat Transistor 163
Gambar 13.7 Contoh pemberian keadaan panjar pada penguat transistor
Gambar 13.7 memperlihatkan contoh rangkaian penguat transistor dengan
sumber tegangan masukan vS dengan resistansi sumber RS. Kita menganalisis rangkaian
tersebut dengan membuat pendekatan seperlunya. Misalkan transistor Q1 adalah terbuat
dari silikon dengan tipe n-p-n dengan penguatan arus b = 200. Beberapa permasalahan
berikut akan kita selesaikan.
(a) Berapa arus DC kolektor ?
(b) Beri komentar seberapa efektif keadaan panjar rangkaian pada gambar 13.7
(misalnya dengan membuat perkiraan besarnya perubahan arus kolektor jika
dilakukan penggantian transistor dengan harga gain arus setengahnya)
(c) Dengan asumsi harga Rs dapat diabaikan, perkirakan efek pada tanggapan
frekuensi isyarat-kecil pada 50 Hz
(i) dari CE
(ii) dari CI.
(d) Jika vS berupa gelombang sinus dengan amplitudo 2 mV dan frekuensi 1 kHz,
perkirakan bentuk tegangan keluarannya dengan
(i) berasumsi RS = 0,
(ii) berasumsi RS = 600 W
Q
+ VCC
vs ~ R2
E
R
Rs
C I
R1
+
_ CE C
I = 100 uF
CC
R
R
R
R
C
v
1
o
RL
V
2
= 560 ohm
= 4700 uF
= 390 ohm
E
L
E
= 10 kohm
= 4,7 kohm
1
= 9 V
164 ELEKTRONIKA DASAR
Penyelesaian:
(a) Pertama harus kita hitung besarnya sumber tegangan rangkaian terbuka basis
(ingat teorema Thevenin) sebagai
2,88 V
9 4,7/14,7
/( ) 2 1 2
=
= ´
V =V ´ R R + R BB CC
dan hambatan sumber basis
3,20 k
// 1 2
=
R = R R B
Untuk transistor dengan gain arus b berlaku
( )
27,9 A
mA
3,20 201 0,39
2,88 0,6
1
m
b
=
+ +
= -
+ +
= -
B E
BB BE
B R R
V V
I
Demikian juga
5,58 mA
200 27,9
=
= ´
= C B I b I
(dalam hal ini kita berasumsi bahwa VBE berharga 0,6 V)
(b) Untuk b = 100 kita mendapatkan
5,35mA
53,5
mA
3,20 101 0,39
2,88 0,6
=
=
+ ´
= -
C
B
I
I
ternyata diperoleh hasil yang hampir sama dengan transistor dengan b = 200.
Dengan demikian rangkaian ini mempunyai stabilitas panjar yang baik. Sebagai
alternatif dari bagian (a) diperoleh
2,19V
390
(201/200) 5,58mA
=
= ´ ´
= E E E V I R
Penguat Transistor 165
sehingga VB = 2,79 V, nampak hampir sama dengan harga VBB, memberi
indikasi bahwa RB berharga sangat kecil. Juga harga VBB cukup besar untuk
menghapus ketidakpastian pada VBE saat menghitung IB.
Gambar 13.8 Rangkaian ekivalen AC
(c) (i) Kita berasumsi bahwa CI berharga cukup besar untuk dianggap terjadi
hubung singkat pada frekuensi 50 Hz, kemudian kita akan lihat efek dari CE.
Kita akan menggunakan model setara transistor seperti pada gambar 13.6 (b).
Kita perlu menggambar rangkaian setara AC, dan untuk keperluan ini untuk
sebarang titik pada tegangan DC adalah pada AC ditanahkan (karenanya
mempunyai tegangan AC nol). Selengkapnya rangkaian tersebut seperti terlihat
pada gambar 13.8. Harga reaktansi dari CE pada frekuensi 50 Hz adalah
0,677
1/ (4700 10 6 2 50) 1
=
w = ´ - ´ p ´ - E C
Reaktansi ini paralel dengan RE = 390 W dimana harganya dapat diabaikan, dan
ini seri dengan
re = 25 mV/5,61 mA
= 4,46 W
Arus sebesar e b i = (b + 1)i mengalir melalui keduanya sehingga tegangan pada
kedua ujungnya adalah sebesar
vb = ib (896 W resistif + 136 W kapasitif)
Rs
vs ~
CI
RE CE
R
R2 1
E
B
re
ib
RL
bib
C
166 ELEKTRONIKA DASAR
dimana karena kita mengabaikan impedansi RS dan CI, maka harganya sama
dengan vS. Bagian dari vS yang muncul pada re adalah sebesar
4,46 / 4,462 + 0,6772 = 0,989. Dengan demikian CE hanya memberikan efek
yang kecil pada frekuensi 50 Hz (ini akan menghasilkan pergeseran fase sebesar
tan-1 (0,677/4,46) = 8,6o)
(ii) Pada kasus ini model seperti terlihat pada gambar 13.5 lebih sesuai sehingga
rangkaian ekivalen AC terlihat seperti pada gambar 13.9.
Gambar 13.9 Rangkaian setara
Kita dapat mengabaikan besarnya reaktansi dari CE sehingga emiter ditanahkan
(grounded) dan hambatan masukan merupakan kombinasi paralel R1, R2 dan
896
200 25 mV/5,61 mA
/
=
= ´
= T E r bV I p
yaitu Rin = (1/896 +1/4700 + 1/10000)-1 = 700 W. Reaktansi CI adalah sebesar
1/w = (100 ´10-6 ´ 2p ´ 50) -1 = 31,8 I C
Bagian dari vS yang muncul pada rp adalah sebesar 700 / 7002 + 31,82 = 0,999 .
Dengan demikian pada frekuensi 50 Hz, CI memberikan efek yang dapat
diabaikan pada besarnya penguatan.
Rs
vs ~
CI
RE CE
R
R2 1
E
B
rp
ib
RL
bib
C
Penguat Transistor 167
(d) Masukan sebesar 2 mV (>> VT = 25 mV) adalah cukup kecil untuk
menghasilkan distorsi pada keluaran, karenanya kita dapat menggunakan
analisis isyarat-kecil. Pada frekuensi 1 kHz, baik CI dan CE dapat dianggap
terjadi hubung singkat.
(i) Disini vbe = vs dan besarnya penguatan adalah sebesar
A = -RL/re = - (560/4,46) = -126
dengan demikian keluaran berbentuk sinusoida dengan amplitudo 252 mV
(ii) Dalam hal ini hambatan masukan sebesar 700 W (lihat bagian c-ii) dikenai 2
mV dari sumber dengan hambatan seri sebesar 600W. Tegangan keluaran
akan turun sebesar (700/(700+600)) ´ 2 mV ´ 126 = 136 mV.
13.6 Pengaturan Tegangan Panjar
Jika kita diminta untuk menentukan besarnya panjar (bias) pada kedua rangkaian pada
gambar 13.10, kemungkinan kita akan kebingungan dengan banyaknya alternatif pilihan
harga. Namun perlu diperhatikan bahwa kita tidak bisa memilih panjar secara acak.
Untuk itu diperlukan aturan agar didapat desain yang tepat, walaupun harga-harga
pilihan dimaksud tidak berupa nilai yang eksak tetapi dalam bentuk interval nilai.
Gambar 13.10 Desain pemberian panjar pada penguat transistor
CC
v
R2
(a)
E
R
E
CE
1
vB
R C
_
R V
+
CE
_
(b)
+
R E
VEE
RC
+
VCC
_
168 ELEKTRONIKA DASAR
Untuk memilih desain yang tepat misalnya untuk rangkaian pada gambar 13.10-
a, sebaiknya VB tidak terlalu terpengaruh oleh adanya aliran arus basis dari pembagi
potensial (sehingga /( ) 2 1 2 V V R R R B CC » ´ + ). Untuk itu diperlukan
( / ) ( / ) 1/ b 2 >> ´ B E E V R V R
atau mendekati
E R << bR 2 (karena B E V »V )
Sebagai acuan dapat dibuat
E R 10 R 2 »
jika dipasang R2 yang terlalu rendah dapat mengurangi hambatan masukan isyarat-kecil
(small-signal input resistance).
Pada kedua rangkaian pada gambar 13.10 perbedaan tegangan antara basis dan
sumber emitor harus lebih besar dari 0,6 volt; dan juga kelebihan tegangan harus lebih
besar dari ketidak pastian harga VBE (~ 0,1 V). Untuk itu diperlukan
0,6 0,1.
0,6 0,1 atau
- >>
- >>
EE
B
V
V
Sebagai pedoman dapat dibuat
» 3 volt, atau » 3 volt B EE V V
atau mungkin
B CC EE CC V »V / 3, atau V »V
Penguat Transistor 169
Biasanya terdapat pembatasan tertentu untuk harga VCC, jika tidak, dapat saja
dipasang harga dari 1 – 1000 volt. Namun biasanya akan lebih realistik dengan
mengambil harga pada daerah 5 – 50 volt. Secara praktis biasanya kita memilih
VCC = 9 volt (standar baterai yang banyak dijual)
atau
VCC = VEE = 15 volt (biasanya dipakai pada penguat komersial)
Dari harga R2, VB, dan VCC selanjutnya dapat ditentukan harga R1.
Biasanya juga terdapat pembatasan tertentu untuk harga RE , RC, dan E C I » I .
Harga RE dan RC dapat berkisar dari 10 W - 10 MW serta IE dapat berharga dari 1mA
sampai dengan 1 A.
Jika hambatan keluaran ditentukan sama dengan RC dan jika hambatan luar
harus dipasang, maka RC harus berharga beberapa kali lebih kecil. Jika arus beban luar
harus dicatu maka IC harus paling tidak beberapa kali lebih besar.
Jika keterbatasan-keterbatasan di atas tidak berlaku, secara praktis harga-harga
berikut dapat dipilih
» = 1 mA E C I I
dan untuk meyakinkan pemilihan panjar yang tepat ambil harga RE dan RC dari
( )
0,6
/ 2
= -
» -
E E EE
C C CC E
I R V
I R V V
Kemungkinan penguatan tegangan dapat ditentukan, yaitu dari
V C e C C T A = -R / r = -I R /V
Dengan demikian harga ICRC adalah tertentu sesuai dengan harga VCC yang dipasang,
yaitu
( )/ 2 C C CC E I R » V -V
4 ELEKTRONIKA DASAR 13.1 Model Setara Penguat
Tuesday, February 2, 2010Posted by Fredi wibowo at Tuesday, February 02, 2010
Labels: Mata Kuliah
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment